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Abstract

In this paper, we present an attention mechanism scheme
to improve person re-identification task. Inspired by biol-
0gy, we propose Self Attention Grid (SAG) to discover the
most informative parts from a high-resolution image us-
ing its internal representation. In particular, given an in-
put image, the proposed model is fed with two copies of
the same image and consists of two branches. The upper
branch processes the high-resolution image and learns high
dimensional feature representation while the lower branch
processes the low-resolution image and learn a filtering
attention grid. We apply a max filter operation to non-
overlapping sub-regions on the high feature representation
before element-wise multiplied with the output of the second
branch. The feature maps of the second branch are sub-
sequently weighted to reflect the importance of each patch
of the grid using a softmax operation. Our attention mod-
ule helps the network learn the most discriminative visual
features of multiple image regions and is specifically op-
timized to attend feature representation at different levels.
Extensive experiments on three large-scale datasets show
that our self-attention mechanism significantly improves the
baseline model and outperforms various state-of-art models
by a large margin.

1. Introduction

Person re-identification is the problem of identifying per-
sons across images using different cameras or across time
using a single camera. Automatic person re-identification
has become essential in surveillance systems due to the
rapid expansion of large-scale distributed multi-camera sys-
tems. However, many issues still prevent person re-id of
achieving high accuracy as compared to other image recog-
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nition tasks; its performance is still far from optimal. These
issues relate to the fact that person re-id usually needs to
match the person images captured by surveillance cameras
working in wide angle mode with a very low resolution and
unstable lighting conditions. Despite the increasing atten-
tion given by researchers to solve the person re-id prob-
lem, it remains a challenging task in a practical environ-
ment. Some of these challenges are depicted in|l|and are:
dramatic variations in visual appearance and ambient envi-
ronment (a), human pose variation across time and space
(b), background clutter and occlusions (c), and different in-
dividuals sharing similar appearances (d) among others.

Current approaches to solving person re-id generally
follow a verification or identification framework or both
[39, 161]. Such a framework takes as input a pair of im-
ages and outputs a similarity score or a classification result.
Moreover, a Siamese convolution neural network architec-
ture [119} [39] 159, 61]] which consists of two copies of the
same network has recently emerged. The two networks are
connected by a cost function used to evaluate the relation-
ship between the pair. Other architecture models, driven
by a triplet loss function, have resulted into part-based net-
works [ [18L 136] where the first convolution layers learn
low-level features while fully connected layers concentrate
on learning higher-level features. All the part contribute
to the training process jointly. In the last decade, with
the advent of deep generative models, GAN-based models
(52,154} 162, 165] have slightly increased the performance of
person re-id task; however, results from these works show
that there is still a room for improvement.

In this paper, inspired by biology and the recent suc-
cess of attention mechanism on Recurrent Neural Net-
work [[7, 113} 126, 133 153]] and Convolution Neural Network
(16, 21) 241 130,132, 141} 46,149, 51} 156, 58], we propose Self
Attention Grid (SAG) for person re-identification. Atten-
tion mechanism gives a network a capability to focus on
specific parts of the visual input to compute the adequate
response. In other words, It helps the network select the
most pertinent piece of information, rather than using all



(d) Background clutters and occlusions

(c) Appearance similarities

Figure 1. Person re-id challenges. Images with a same border color
represent the same identities within a given group.

available information. This is particularly important in per-
son re-id where input images might contain information that
is actually irrelevant for computing visual responses. In a
classical person re-id model, the whole input image is used
to predict the output regardless of the fact that not all pix-
els are equally important. As a result, we use a variant of
self-attention mechanism to overcome such limitations. The
contributions of this work are:

1. a simple feed-forward attention mechanism with mul-
tiple non-overlapping attention regions;

2. an attention module solely based on self-attention that
can extract high discriminative feature representation
from a high-resolution image and preserve low-level
information from the initial representation;

3. a fully differentiable attention module that can be
easily plugged into any existing network architecture
without much effort.

2. Related Works

In this section, we present the works relevant to un-
derstand our approach. This include attention mechanism
background together with their application to person re-
identification task.

2.1. Attention Mechanism

Inspired by neuroscience and biology, attention mecha-
nism allows deep neural network to focus on specific parts

of the input vector. Not only it allows a network to learn
the most discriminative feature, but also it effectively re-
duces the computational burden of processing the whole in-
put vector.

Attention mechanism started in the field of Natural Lan-
guage Processing (NPL) [1]] and became central to many
deep learning approaches, especially Recurrent Neural Net-
works (RNNs). It has been successfully applied to vari-
ous interesting tasks such as text-based question answer-
ing [13]], image captioning [50]], visual question answering
[511149], speech recognition [[7,33}[53] and fine-grained im-
age classification [16} 41 56, [58]]. Following its success
in machine translation, many researchers started exploring
its application into the computer vision fields by proposing
various forms of attention mechanisms: hard-attention [26],
soft-attention, global attention and local-attention to cite but
a few.

In particular, self-attention mechanism, also referred to
as intra-attention in [6, 28] attends to different parts of a
single sequence by using the internal representations of the
same sequence. [40] proposed scaled dot-product atten-
tion combining self-attention with a scaling factor and suc-
cessfully achieved state-of-art in machine translation. [29]
generalized an autoregressive model architecture based on
self-attention for image generation and [44]] formalized self-
attention for machine translation as a class of non-local fil-
tering operation that can be applied to video sequences.

While many researchers [30, 46] have inves-
tigated the application of soft and hard attention mecha-
nism to person re-identification; however, to the best of
our knowledge, multi-depth regions solely based on self-
attention mechanism has not yet been explored in this con-
text. Our work, exploit the attention provided by the atten-
tion mechanism at different levels to capture information
and efficiently learn to focus on specific part of the image
by using only the internal representations of the same image
at each time.

2.2. Person Re-Identification

Person re-id works can be roughly divided into two
groups: distance metric learning and deep machine learn-
ing based approaches. The first group, also named discrim-
inative distance metric focus on learning local and global
feature similarities by leveraging inter-personal and intra-
personal distances [57, [60]. The sec-
ond group is CNN-based with a goal to jointly learn the
best feature representation and a distance metric. Some
feature learning approaches [3l [18} [36] decompose the im-
ages into part based. Other methods [61]] used
a siamese convolution neural network architecture for si-
multaneously learning a discriminative feature and a simi-
larity metric. Given a pair of input images, they predict if
it belongs to the same subject or not through a similarity



score. To improve the similarity score, [27, 63] proposed
to optimize the evaluation metrics commonly used in per-
son re-id. Recently [52, 154} 162, 165] proposed to address the
problem of lack of large datasets in person re-id by train-
ing a CNN based architecture and a GAN [15] generated
samples through a regularization method [37]]. It was par-
ticularly observed that generated images improve the re-id
accuracy when combined with a training sample.

Similar to our work, [24]] proposed an end-to-end Com-
parative Attention Network (CAN) to progressively com-
pare the appearance of a pair of images and determine
whether the pair belongs to the same person. During train-
ing, a triplet of raw images is fed into CAN for discrimi-
native feature learning and local comparative visual atten-
tion generation. Their network architecture, made of two
parts require much higher computation cost compared to
our work. [21]] proposed a complex CNN model for jointly
learning soft and hard attention. The two attention mech-
anisms with feature representation learning are simultane-
ously optimized. Finally, [30] proposed gradient-based at-
tention mechanism to solve the problem of pose and illumi-
nation found in re-id problem in a triplet architecture and
[46l] recommended Co-attention based comparator to learn
a co-dependent feature of an image pair by attending to dis-
tinct regions relative to each pair.

In general, attention mechanism is used in re-
identification task to discover the most discriminative infor-
mation for further processing. We depart from these works
and propose our attention based-CNN model in next sec-
tion.

3. Our Approach

In this section, we introduce our Self Attention Grid
(SAG) mechanism coupled with ResNet50 baseline specif-
ically designed for person re-identification tasks. We first
describe the overall network architecture and then elaborate
on the design of the SAG module.

3.1. Overview

As described in Figure [2} the overall network architec-
ture of the proposed attention consists of two branches shar-
ing the same weights. After each residual unit (layer;), we
introduce a SAG module, we refer to this position as the
attention depth (D;). The network is fed with two copies
of the same image I; € RO*M1xW1 and [, € RO*H2xW2
such that the spatial dimension of I; is twice the spatial di-
mension of Iy i.e (Hy, W;) = (2H3,2W5). To do this, we
upsampled /; by a factor of two using bilinear interpolation
as follows:

Hy = | Hy x scale_factor |

1
W1y = | W3 X scale_factor | 1)

where scale_factor = 2, (H;, W) the height and width of
the high resolution image I, (Hz, W5) the spatial dimen-
sion of the original image I and C' the channel.

At depth D;, the first branch (upper-branch) processes
the high resolution image I; and outputs a high dimensional
features le ‘, whereas the second branch (lower-branch)
processes the low-resolution image I and outputs a low
dimensional features f2D ¢ representing the filtered feature
map, with our filtering attention grid putting focus on the
interesting part of the original image. Given D;, the net-
work computes the attention response f2D * weighted by an
importance score predicted by the SAG modules. In the
next sections, for the sake of brevity we simply refers to
FP 13 as fuy fo

Given the high dimension image, we learn a discrimina-
tive feature using the upper CNN branch before element-
wise multiplied by the output of the attention grid com-
ing from the lower branch. The proposed method goes
beyond the traditional CNN based attention models in re-
identification and proposes an attention grid network that
can learn multiple discriminative parts of person images as
depicted in Figure 4]

In general, attention model output a summary vector z
of a class probability y;; focusing on the information of an
input vector ;. z is usually a weighted arithmetic mean of
y;; with weights chosen by relevance of each y;, given z;. In
our case, the output of the attention module is a multi-grid
region which relevance is produced by a softmax operation.

The overall network architecture is finally trained at once
for identity classification task using supervised learning.
We use the conventional cross-entropy loss function defined
by:

N
L(0) == logp(ii = v:) )
=1

where N denotes the number of output classes, p(g; = v;)
the vector class probability produced by the neural network,
7; the predicted label, y; the ground-truth label and 6 the
network parameters. The network is trained to minimize
Equation 2]

3.2. The Self Attention Grid

Let X = {(x(l)’y(l))’(x(2)’y(2))’...(x(n),y(n))}, be
n training samples where x(?) represents an image €
REXHXW and () € [1,...,n] its corresponding label; we
aim at learning a feature representation model for person
matching across multiple views. As a result, we propose
Self Attention Grid as an attention mechanism for locat-
ing the most discriminative pixels and regions at different
depths. We consider a multi-branch network architecture
with weights shared between the two branches.

Our Self Attention Grid module consists of a 1 X 1 convo-
lution, a batch normalization, an activation function (ReLU)
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Figure 2. The baseline architecture model (left) coupled with our Self Attention Grid (SAG) Module (right). We show how SAG modules

can be easily integrated into existing network without much efforts.

and a softmax function. A convention neural network rep-
resents a function h(z; 6) defined by:

h(z) = wi -z + by, 3)

where (wy, by,) denote the network parameters that are au-
tomatically learned from data. Given x;, the output h(z;)
of a residual unit L; is fed into the 1 x 1 convolution layer
to produce an attention heatmap e;;. We use the softmax
operation to normalize the full self attention so as to make
the sum equal 1 using:

exp(e;;)

N
> j—o exp(eij)

The softmax layer computes the maximum of relevance of
the variable 2(*) according to eij. S;; is a two dimensional
vector which we then convert into a grid attention G;; €
RN >1xhxw guch that :

“4)

Sij = softmax(e;;) =

N
Y Gi=1 5)
=1

The output of the each attention grid consists of one
spatial channel dimension and defines a function ¢
RNXCXHXW _y RNx1xhxw The output of the attention
module f> is element-wise multiplied by each channel di-
mension of f; produced by the same layer sequence pro-
cessing the high image resolution:

v=[10f (6)

where f; € REOHIXW and f, € R'™"*%  To make this
possible, we applied a sampled-based discretization pro-
cess to downsample the high feature representation f1, thus

reducing its dimensionality and allowing the feature con-
tained in the sub-regions of f; to correspond to the initial
sub-region representations of fs.

Finally, we performed Lo normalization over the at-
tended regions v using:

v

ff= (7)

max({|v[lz, €)

where ||-||2 is the Euclidean norm and ¢ = le — 12 a small
value to avoid division by zero. This Equation [7| helps keep
the overall error small. We show in section [4.6] how this
can be used to improve the classification accuracy.

In general, our approach can be considered as a kind
of region-based-attention for it searches through the image
multiples regions that match what the network is interested
in for further processing.

4. Experiments

To validate the effectiveness of the proposed attention
mechanism, we intensively conduct experiments and abla-
tion study on three widely used datasets [ﬂ

4.1. Person Re-ID Datasets

Three datasets were used to evaluate the proposed at-
tention scheme. They include Market-1501, CUHKO3 and
DukeMTMC-RelD.

Market-1501 [60] is one of the largest and most realis-
tic dataset in person re-identification. It is collected using
six overlapping cameras. The image bounding boxes were
automatically detected using the Deformable Part Model

IThe code of the experiments is available at https://github.
com/jpainam/self_attention_grid
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Table 1. Impact depth of SAG modules on three datasets. We report results with no re-ranking [63[]. Basel.+ D; refers to our baseline
architecture with SAG module at depth i

SAG Components Market-1501 [60] CUHKO3 [19] DukeMTMC [62]

R1 RS R10 | mAP R1 RS R10 | mAP R1 RS R10 | mAP
Baseline(ResNet50) 83.49 | 93.82 | 9590 | 63.87 | 71.04 | 92.89 | 96.63 | 80.46 | 72.04 | 84.96 | 89.09 | 54.36
Basel.+ Dy (h=40,w=16) | 84.35 | 94.00 | 96.08 | 64.40 | 78.50 | 95.60 | 98.22 | 85.93 | 73.74 | 84.87 | 88.24 | 51.99
Basel.+ Dy (h=20,w=8) | 85.18 | 94.12 | 96.20 | 65.90 | 78.99 | 95.63 | 98.13 | 86.25 | 74.28 | 85.05 | 89.18 | 52.20
Basel.+ D3 (h=10,w=4) | 87.65 | 95.07 | 96.91 | 70.03 | 81.41 | 96.62 | 98.51 | 88.00 | 76.30 | 87.25 | 90.80 | 56.62
Basel.+ Dy (h=5,w=2) 90.17 | 96.38 | 97.48 | 73.87 | 82.46 | 96.44 | 98.42 | 88.64 | 79.94 | 89.68 | 92.15 | 60.88
Basel.+ Dy 2 84.09 | 93.97 | 96.17 | 61.28 | 77.60 | 95.79 | 98.50 | 85.52 | 74.55 | 84.96 | 88.69 | 51.65
Basel.+ Di 23 85.10 | 94.24 | 96.23 | 65.60 | 77.77 | 95.81 | 98.34 | 85.59 | 72.44 | 84.52 | 88.47 | 51.03
Basel.+ Dy 234 82.13 | 92.79 | 95.72 | 60.81 | 76.51 | 94.86 | 97.86 | 84.53 | 70.42 | 82.27 | 86.58 | 4876

Table 2. Dataset split details. The total number of images (Query-
Imgs, Gallerylmgs, Trainlmgs), together with the total number of
identities (TrainID, TestID) are listed.

’ Dataset \ Market \ CUHKO03 \ Duke ‘
Number of IDs 1501 1,467 1404
Number of Images | 36,036 14,097 36,411
Cameras 6 2 8
#Train IDs 751 1367 702
#Train Images 12,936 13,113 16,522
#Test IDs 750 100 702
#Query Images 3,368 984 2,228
#Gallery Images 19,732 984 17,661

(DPM) [10]. The dataset contains 32, 668 from 1, 501 iden-
tities divided into 12,936 images for the training set and
19,732 images for the testing. There are 751 identities in
the training set, 750 identities in test set, 3, 368 query im-
ages and 2,793 distractors. In this work, we use all the
training set for training and all the test set for testing.

CUHKO3 [19] contains 13,164 images from 1,467
identities. The dataset is captured by six cameras, but each
identity only appears in two disjoint camera views with an
average of 4.8 images in each view. The dataset is split into
two subsets, one set contains manually cropped bounding
boxes, and the other set is automatically detected using the
Deformable Part Model [10]]. In this work, we use the de-
tected set.

DukeMTMC-relD [62] is a subset of a pedestrian track-
ing dataset DukeMTMC [31]]. The original dataset is a col-
lection of handcrafted bounding boxes and high resolution
videos data set recorded by 8 synchronized cameras over
2,000 identities. In this work, we use the subset defined
in [62]. The subset follows the Market-1501 format and
contains 36,411 images from 1,404 identities divided into
16,522 images from 702 identities for the training set and
17,661 images from 702 identities for the test set. There
are 2, 228 query images and 17,661 gallery images.

For a fair comparison, we follow the dataset split strategy
of each dataset as described in their first released. Table 2]
gives a summary of the split strategy.

4.2. Evaluation Metrics

We adopt the quantitative metrics cumulative matching
curve (CMC) and Mean Average Precision (mAP) as they
are commonly used in person re-id.

Cumulative Matching Curve is a precision curve that
provides recognition for each rank. Rank-k accuracy de-
notes the probabilities of one or more correctly matched im-
ages appearing in top-k. Given an query set @ = {I;}},
from n-identity, we compute the L, distance between the
query image and all gallery images and return a list of the
top-n images. If the returned list contains the query image
at a position k-th, we consider this query as success at rank-
k and set it to 1; if the top-k ranked gallery samples do not
contain the query identity, we set it to 0. The final CMC
curve is computed by averaging rank-k over all the queries.

Re-ranking Recent works [2} 143} [63]] choose to perform
an additional re-ranking to improve the re-identification ac-
curacy. In this work, we use re-ranking with k-reciprocal
encoding [63]], which combines the Euclidian distance and
Jaccard distance.

Note that, all the CMC score for the CUHKO3 and
DukeMTMC datasets are computed with the single-shot set-
ting. Only, experiments on Market-1501 dataset are under
both the single-query and multi-query evaluation settings.

4.3. Implementation details

We use ResNet50 [12]], pre-trained on imageNet as base-
line and fine-tune the model according to the number of
classes i.e. 751;1,367 and 702 units for Market-1501,
CUHKO3 and DukeMTMC-RelID respectively. All the in-
put images are resized to 160 x 64 before random horizontal
flipping. We scale the pixels in the range of —1 and 1 and
apply zero-center by mean pixel and random erasing [64].
Finally, we train the model for 200 epochs using stochastic
gradient descent (SGD) with a batch size of 32, a momen-
tum of 0.9 and a weight decay of 5 x 10~%. We use a base
learning rate {7 of 0.01 for upper layers and 0.1 for fully
connected layers. To further improve the training capabil-
ity, we gradually decrease Ir by a factor of 0.1 every 30

epochs using an exponential policy: I = Irr(9) x 'ystep’isize
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Figure 3. The effect of the position of SAG within a CNN archi-
tecture. It can be observed that deeper position yields better results
compared to shallow

where 17(?) is base learning rate, v = 0.1, stepsize = 30
and k the index of the current mini-batch iteration. We use
a validation set to evaluate intermediate models and select
the one with maximum performance for testing.

4.4. Ablation study

In this section, we give detailed analysis and investigate
the impact produced by SAG module when we vary the at-
tention depth D;(i € [1,...4]). We systematically intro-
duce SAG modules at different levels (i.e. after each resid-
ual unit) to capture information and observe accuracy vari-
ation. Figure 3] shows that SAG helps minimize the repre-
sentation learning risk and improve the descriptive power
of the baseline. We first show the effect of applying a sin-
gle SAG module at different depths and then examine the
impact of multiple (up to 4) SAG modules. We conduct a
series of experiments on three datasets and report results in
Table[T]

Baseline model without attention module In Table [I]
Baseline(ResNet50) refers to the ResNet50 baseline trained
for person re-id task. We changed the last fully connected
layer to match the number of classes of the three dataset and
trained the network using supervised learning. As shown
in section [d.3] the average precision accuracy of our base-
line model already outperform previous state-of-art meth-
ods. However, this performance is low compared to our
attention based model.

Baseline model with single SAG module The D; — D3
architectures consist only of three or two convolution lay-
ers and are computationally efficient, whereas D, is deeper
(4-conv layers), computationally more expensive, but has
better performance. As it can be seen in Table |1} deep D;
results in better accuracy, reaching saturation at depth Dj,.
It results that, applying our attention module on deeper lay-
ers yields better results than on upper layers. These exper-
iments show that SAG enforces the network to learn more
discriminative representation. We therefore recommend the

Table 3. Comparison results on Market-1501.

Query type Single Query Multi Query

Methods(%) R1 mAP | RI1 mAP
CAN [24] 60.3 | 359 | 72.1 | 479

DNS [53] 61.02 | 35.68 | 71.56 | 46.03
Gated Reid [39] 65.88 | 39.55 | 76.04 | 48.45
MR B-CNN [38] 66.36 | 85.01 | 90.17 | 41.17
Cross-GAN [54]* 72.15 - 94.3 | 48.24
SOMAnet [3] 73.87 | 47.89 | 81.29 | 56.98

HydraPlus-Net [23] | 76.9 91.3 94.5 -

Verif.Identif [61]] 79.51 | 59.87 | 85.47 | 70.33
MSCAN [18] 80.31 | 57.53 | 86.79 | 66.70
SVDNet [35]] 82.3 | 62.1 - -

DeepTransfer [[1L1]* | 83.7 65.5 89.6 | 73.80
LSRO [62] 83.97 | 66.07 | 88.42 | 76.10
JLML [20] 85.1 65.5 89.7 | 745
KFM-RelD [34] 90.1 75.3 - -

SAG 90.17 | 73.87 | 92.76 | 80.15
SAG+RR 92.04 | 89.28 | 94.60 | 85.32

application of our module on last layers.

Baseline model with an accumulation of SAG mod-
ules We test the importance of multiple attention modules
at different depths at the same time by increasingly stacking
attention layers at D;_,4 and after each residual unit. Table
[T] shows that stacking multiple SAG modules at different
depth results in a accuracy drop of 1% each time.

We achieved the best results with D, settings on all the
datasets.

4.5. Comparison with the state-of-arts

Tables [3|[][5] show comparison results with state-of-art
methods. ’-” means that no reported results is available and
* means paper on ArXiv but not published. In the results,
SAG represents our method with ResNet50 as baseline and
SAG+RR represents our model with re-ranking.

Evaluation on Market-1501 We compared our model
with existing works in Market-1501 datasets and showed
the superiority of our model. We achieved a 90.17% rank-
1 accuracy and 73.87% mAP on single query setting. Our
method outperforms JLML [20](hard attention) by a factor
of 5.07% and slightly outperforms KFM-RelD [34] (Resid-
ual Self Attention) by a factor of 0.07% on rank-1 accuracy
achieving state-of-arts on attention-based CNN models for
person re-id.

Evaluation on CUHKO03 On this dataset, we achieved
an 82.46% rank-1 accuracy and 88.64% mAP respectively.
We improve the baseline by a factor of 11.42% on rank-1
accuracy and 8.18% on mAP respectively.

Evaluation on DukeMTMC-RelID On this dataset, we
achieved competitive result with DCC [46] which Co-
Attention model exceeds our Attention-Grid by a small fac-



Table 4. Comparison result with state-of-arts on CUHKO03.

CUHKO3
Methods Ri | R5 [ RI0 | mAP
SLCI [22] 5220 | 84.30 | 948 | -
DNS [53] 547 | 80.1 | 8830 | -

FisherNet [43]] 63.23 | 89.95 | 92.73 | 44.11
MR B-CNN [38] | 63.67 | 89.15 | 94.66 -
Gated RelD 68.1 | 88.1 | 94.6 | 58.8
SOMAnet [3] 72.40 | 92.10 | 95.80 -

SSM [2] 727 | 924 | 9%6.1 | -
SVDNet [33] 81.8 | 952 | 97.2 | 8438
[ SAG [ 82.46 | 96.44 | 98.42 | 88.64 |

Table 5. Comparison results of the state-of-arts methods on
DukeMTMCRelD.

DukeMTMCReID
Methods RT | R5 | RI0 | mAP
PUL [9] 365 | 526 | 579 | 215
SPGAN 469 | 626 | 685 | 264
LSRO [62] | 67.68 | - N PURE
OIM [#7] | 68.1 | - - | 474

TriNet [14]* | 72.44 - - 53.50
SVDNet [33] | 76.7 | 864 | 89.9 | 56.8
DCC [46] 80.3 | 92.0 | 97.1 | 59.2

SAG 79.94 | 89.68 | 92.15 | 60.88
SAG+RR 85.28 | 91.07 | 93.76 | 81.05

tor of 0.36% (79.94 — 80.3).

Visualization of the Self Attention Grid We visualize
the attention grid at four different depths. Figure ] shows
the visualization of our proposed attention mechanism. For
example, with (h = 5,w = 2), the results show how the
SAG module can extract multi-parts and discriminative re-
gions of the input images (e.g., backpack, legs, person’s
face, things in their hands, t-shirts). Also, it can be easily
observed that our attention model successfully ignore the
image’s background.

4.6. Discussion

An end to end CNN-based model which incorporates a
self-attention mechanism at different levels has been pro-
posed. The attention module can be plugged into any exist-
ing system and is fully differentiable. The parameters of the
SAG module can be learned at the same time during train-
ing. In other words, the attention layers and the network are
trained simultaneously using back-propagation. The main
contribution of this paper is a deep attention grid that can
focus on multiple regions of an image with high resolution
and at the time preserve the internal information in the low
resolution. Previous approaches [20, 21, for apply-
ing attention to re-identification mainly tend on finding a
single attention region on the image for further processing;

h=20,w=8

Figure 4. Visualization of the attention grid predicted by
D1, D2, D3, Dy architectures. The first column shows he origi-
nal images. The second and last columns show the attention grid
learned with h = 5,10,20,40 and w = 2,4, 8,16. High atten-
tions are shown in red and yellow. The attention grid also predicts
low values for backgrounds. Best viewed in color

while it is true that a single regions can describe a person,
we argue that paying attention to more than one region si-
multaneously can improve the person re-id. In general, we
describe our proposed attention mechanism as modular, ar-
chitecture independent, fast and simple.

During training, the gradient of our network can be de-
composed into two additives terms with the first term propa-
gating information directly through the first branch, without
any attention information and the second term propagating
information back to the attention zone units.This approach
can be considered as a soft attention as the gradient is di-
rectly computed during training and the update of network
parameters achieved through the use of the conventional
Gradient Descent algorithm.

We also observed classification accuracy improvement
only when we add L, normalization to the 1%*,2"¢ and
374 residual units, but in 4t layer, the classification accu-
racy drastically decrease. We therefore recommend using
Equation [7] only on upper layers. This is due to the non-
sparseness propriety of the Lo norm which positively affects
the classification accuracy by leveraging high-level features
but negatively disturb learned low-level features.

5. Conclusion

This paper proposed Self Attention Grid (SAG) based-
CNN model for person re-identification tasks. We pro-
posed SAG modules to find the most informative regions
of input images at different depth levels and combine them
with the output feature maps of the same layer. Our pro-
posed attention only uses the internal representation of the
input vector at each step to update the attention response.
We further performed an ablation study to demonstrate that
the model generalizes well when applied to deep layers.
Design choices for implementing the attention model (at-
tention mode, weight sharing, output normalization and



attention depth) has been proposed and compared using
three popular datasets Market-1501 [60], CUHKO3 [19] and
DukeMTMC-RelD [62]. We successfully improve the ac-
curacy of the baseline CNN model and outperform a vast
range of state-of-art methods. In general, our attention grid
mechanism can be adopted for any re-id task such as vehicle
re-id.
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