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ABSTRACT

In this paper, we propose a new label smoothing regularization
scheme for person re-identification. We first use an unsupervised
method for discriminative learning representation. We apply a clus-
tering algorithm on the learned feature to partition the training
set into k groups of equal variance and derive a shared space for
similar images. Secondly, a GAN model is fed with each cluster
to produce samples with relatively similar features to the original
space. Our method consists of assigning an adaptive smooth label
distribution to each generated sample according to their original
cluster. To train our model, we define a new objective function
which takes into account the generated samples and fine-tuned
a CNN baseline using the objective function. Our model learns
to exploit the samples generated by the GAN model to boost the
performance of the person re-id by improving generalization. Ex-
tensive evaluations were conducted on four large-scale datasets to
validate the advantage of the proposed model.
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1 INTRODUCTION

Person re-ID is a task of building up correspondence between per-
sons from various cameras and deciding if a given person has been
seen by another camera. The issue has been broadly examined in the
past and has achieved phenomenal results with machine learning
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based approach [2, 8, 38, 40]. Current deep learning approaches re-
quire a huge volume of labeled data for training. Such large dataset
are not common in person re-identification; making it difficult to
apply deep learning methods. One way this can be mitigated is by
using unsupervised methods to train on data without labels. These
methods learn features from the data which can then be used for
supervised learning with small datasets. In this work, we propose a
semi-supervised framework that uses DCGAN [21] to generate data
from clusters. These generated images are assigned a smooth label
distribution based on their original cluster. We use the generated
data in conjunction with the labeled data and define two losses,
an unsupervised loss, and supervised loss. The model is trained to
minimize the two losses.

Our framework consists of three main steps. In the first step,
we train a CNN model to learn feature representation and extract
high dimensional vectors representing the feature maps of the
training images. The extracted feature map is fed into a k-means
clustering algorithm to separate similar images from dissimilar
images. In the second step, each cluster set is used to train an
image generator and output sample images with relatively similar
feature representation. We then assign a label to generated samples
using our regularization method. In the final step, we define a
new loss function and introduces a noise linear layer into existing
architecture, to adapt the network outputs against the noise GAN
label distribution. Our model generalize well, and experimental
results show that it outperforms previous state-of-art methods. The
summary of our contributions are:

o the introduction of a new label smoothing regularization
scheme for person re-id task.

o the adoption of clustering design over the feature map rep-
resentation and a Partial Label Smoothing Regularization
(PLSR) over generated images.

e and finally a semi-supervised learning representation de-
sign with PLSR that improves the person re-identification
accuracy.

1.1 Generative Adversarial Network

Introduced by Goodfellow et al. [11], a GAN model consists of two
different components: a generator (G) that generates an image and
a Discriminator (D) that discriminates real images from generated
images. They compete following the minimax two-player game.
Radford et al. proposed Deep Convolutional GAN (DCGAN) and
certain techniques to improve the stability of GANs. The trained
DCGAN showed competitive performance over unsupervised algo-
rithms for image classification tasks. Multiple variants of GANs for
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realistic image generation [4, 21, 28, 43, 44], text-to-image genera-
tion [22]; video generation [27]; image-to-image generation [12],
image inpainting [20], super-resolution [15] and many more were
published. In this work, we use DCGAN [21] model to generate
unlabeled images from the training set.

A Cluster C

Generated image from C

Figure 1: Our method: Clustering and Partial label smooth-
ing distribution over generated samples

1.2 Person Re-Identification

Early works on person re-id, KISSME [14] [37], XQDA [17], MLAPG
[18], LFDA [31], Similarity Learning [5], SILTP [17] and LBP [35]
are based on metric distance and aim at learning inter-personal or
intra-personal distances. However, recent works are CNN based
with a goal to learn the best feature representation and distance
metric. Furthermore, recent works like [3, 32, 33, 39, 42] are CNN
and GAN based. Similar to our work, Zhedong et al. [40] show that a
regularized method (LSRO) over GAN-generated data can improve
person re-id and propose to assign uniform label distribution to
unlabeled data. In addition, Zhong et al. [42] propose a camera
style (CamStyle) adaptation method to regularize CNN training
through the adoption of LSR and use CycleGAN [43] for image
style generation. We show in section 2.3 how our model differs
from [40] and [42].

2 MODELING

2.1 Unsupervised loss

We partition the training into k group objects with relatively similar
features. To do this, we define an objective function £(6) such that.

N K
LO) =2 > 1 Fi—pre 1P 1

i=1 k=1
_ (D) (2 (m) NxM : .
where F = {x(l),x(z) .. .,x(n) }eR represents the high di
mensional feature vectors extracted from the last convolution layer
given an input image I with W X H X C shape dimension (C is the
channel and W X H is the spatial size); yy is a cluster centroid and
|| . || the Euclidean distance between a feature data x((;)) ;and N the

number of cases.
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Eq. 1 assures that the distance between each training sample and
its assigned cluster center is small for each features . Using this
objective function resulted in better clustering quality.

For DCGAN training, we define a loss function similar to [11] and
minimize Eq. 2 with respect to the parameters of G(z) and maximize
Eq. 2 with respect to the parameters of D(x).

L6an = log D(x) + log (1 - D(G(2) @

2.2 Semi-supervised loss

Let p(§; = yil|l;) be a vector class probabilities produced by the
neural network for an input image I;. We define the cost function
for real images as the negative log-likelihood:

K
L6) = - > log p(fi = yilI;) = —log p(y|x: 6) ®3)
i=1

In general, neural network represents a function f(x;6) which
provides the parameters w for a distribution over y. So minimizing
L(0) is equivalent to maximizing the probability of the ground-
truth label p(§; = y;|I;). where 0 represents the set of parameters
of the network.

2.2.1 Label-smoothing regularization (LSR). Szegedy et al. [25]
introduce a mechanism to regularize a layer by estimating the
marginalized effect of label-dropout during training.

K
H(g.q) = = > logp(k)gr(k) and  gr(k) = (1 - €)dk 4 + I% 4)
k=1

where 6y, is Dirac delta.

Based on on [25] work, we introduce our new loss function for
semi-supervised learning as a combination of cross entropy loss Eq.
3 and a modified version of LSR defined as followed.

Given I,z;, =1 if I; € C and z;;, =0 if I ¢ C.
Here, z; j are the unnormalized probabilities of the ith image gen-
erated from cluster C with K classes. z; represents a one-hot vector
where every entry k is equal to 1 if the class label k belongs to C
and 0 if not. We consider the ground-truth distribution over the
generated image I; and normalize z; so that ZIk(:l zj ;= 1. To ex-
plicitly take into account our label regularization for I;, we change
the network to produce

1

zi = Ezi’k for ke{1,2,...,K} (5)

and we optimize X; r £(z;, %Zz’,k) where k is the number of class
label in cluster C. Our loss for generated images is defined as:

K
Lprs(0) = = > logp(zi = zi|I;) = —log(p(z|x; 0) (6)
i1

Combining Eq. 3 and Eq. 6, the proposed objective function Lpysr
is characterized by:

Lpusw(®) = ~(1 ~ 2)log (pylx:0) ~ = log [plxi0)) @)

Where K is the number of classes. For training images, we set Z = 0
and for the generated images, Z =1
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2.3 Discussion

Recently, Zheng et al. [40] propose Label Smoothing Regulariza-
tion for Outliers (LSRO) while Zhong et al. [42] propose CamStyle.
Although similar to our moldel, they differ from our model in two
aspects.

First, the two models [40, 42] assign uniform label distribution to the
generated images, i.e., equal probability distribution Ly sgr(e = 1)
for LSRO and Ly sg(e = 0.1) for CamStyle. Whereas our method
assigns nonuniform label distribution for the generated images, i.e.
Lrsr(e = kl) where k; is the class set size of cluster i. In other
words, an etiual distribution to all generated images leads to an
over-smooth when the number of classes is excessively large, but
assigning adaptive label distribution based on their similarities is
the best way to with such unfairness introduce by LSRO and Cam-
Style. Consequently, this strategy enables our model to be highly
efficient in dealing with large amount of data. Our method PLSR
learns the most discriminative features and can easily avoid the
over-smooth similarity.

Second, thanks to k-means clustering algorithm, our model is
able to keep the similarities and spread feature space through the
generation of cluster images to improve the person re-identification
accuracy. Compared to LSRO and CamStyle, we introduce an extra
noise layer to match the noisy distribution introduced by the gen-
erated images. The parameters of this linear layer can be estimated
as part of the training process and involve simple modification of
current deep network architectures.

However, LSRO, CamStyle and our method share common prac-
tices such as (1) leveraging the training set by the generation of
sample images using GAN models; (2) adopting Label Smooth Reg-
ularization (LSR) to alleviate the impact of noise introduced by the
generated images; (3) finally, performing semi-supervised learning
for person re-id using labeled and unlabeled data in a CNN-based
approach.

3 EXPERIMENTS

Clustering: We use a CNN ! model to learn good intermediate
representation of the training set, extract high dimension feature
representation from the last convolution layer and apply k-means
algorithm to cluster the training set into k groups (2,...,5 ) of
similar images. K-means clustering algorithm is applied directly
on feature maps. We found this way to be faster and better than
clustering on raw data images.

To judge the goodness of our clustering algorithm, we performed
a cluster quality metric 2 on a dataset and found the score higher
for cluster size = 3. As a result, we use k = 3 for all the remaining
experiments.

Generative Adversarial Network: Our DCGAN model fol-
lows the implementation details of [21]. The Generator G consists
of four deconvolution operations with 5 X 5 filter size and a stride of
2. The input shape of G is a 100-dim uniform distribution Z scaled
in the range of [-1, 1] and the output shape a sample image of
size 128 X 128 X 3. Similarly, the Discriminator D consists of four
convolution operations with 5 X 5 filter size and a stride of 2. We
add a linear layer followed by a sigmoid to discriminate real images

In this work, we use ResNet model, but any other CNN could be considered instead
2 Silhouette Coefficient [23]
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Table 1: Dataset split details. The total number of images
(QueryImgs, GalleryImgs, TrainImgs), together with the to-
tal number of identities (TrainID, TestID) are listed. 12,000
generated samples were added to each training

Dataset Market | CUHKO3 | VIPeR | Duke
#IDs 1501 1,467 632 1404
#Images 36,036 14,097 1,264 | 36,411
Cameras 6 2 2 8
TrainID 751 1367 316 702
Trainlmgs 12,936 13,113 625 16,522
TestID 750 100 316 702
Querylmgs 3,368 984 632 2,228
Gallerylmgs | 19,732 984 316 17,661

Table 2: Comparison results on Market-1501.

Single Query  Multi Query
Methods Ri [ mAP | RI | mAP
DNS [34] 61.02 | 35.68 | 71.56 | 46.03
Gate Reid [26] 65.88 | 39.55 | 76.04 | 48.45
SOMAnet (3] 73.87 | 47.89 | 81.29 | 56.98

Verif.Identif [39] 79.51 | 59.87 | 85.47 | 70.33
DeepTransfer [8]* | 83.7 65.5 89.6 | 73.80
LSRO [40] 83.97 | 66.07 | 88.42 | 76.10
(Ours) PLSR 89.16 | 75.15 | 92.25 | 81.92

Table 3: Comparison results with state-of-arts on CUHKO03.
We use single query setting and the detected subset

Methods R1 R5 R10 | mAP
Gated RelD [26] 68.1 88.1 94.6 58.8
SOMAnet [3] 72.40 | 92.10 | 95.80 -

SVDNet [24] 81.8 95.2 97.2 84.8
Verif Identif. [39] | 83.40 | 97.10 98.7 86.40
LSRO [40] 84.62 | 97.60 | 98.90 | 87.40
(Ours) PLSR 91.03 | 98.22 | 99.26 | 94.21

Table 4: Comparison results on DukeMTMCRelD.

Methods R1 R5 R10 mAP
BoW+KISSME [37] | 25.13 | - - 1217
XQDA (LOMO) [17] | 30.75 - - 17.04
LSRO [40] 67.68 - - 47.13
OIM [30] 68.1 - - 47.4
TriNet [10]* 7244 | - - 53.50
SVDNet [24] 76.7 86.4 89.9 56.8
(Ours)PLSR 76.53 | 88.15 | 91.02 | 60.79

against fake images. The input shape of D includes sample images
from G and real images from the training set. Each convolution and
deconvolution layer is followed by a batch normalization and ReLU
in both the generator and discriminator.
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Figure 2: Rank accuracy for Market-1501, DukeMTMCRelD, VIPeR and CUHKO03 datasets. Comparison with the state of art

result. Our model outperforms number of state-of-art results.
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Table 5: Comparison results VIPeR dataset.

Methods R1 R5 R10 R20

ImproveDeep [1] 34.81 | 63.61 | 75.63 | 84.49
KISSME [14] 3481 | 60.44 | 77.22 | 86.71
Simil.Learning [5] 36.80 | 70.40 | 83.70 | 91.70
MFA (LOMO)[31] 38.67 | 69.18 | 80.47 | 89.02
XQDA (LOMO) [17] | 40.00 | 68.13 | 80.51 | 91.08
TCP [6] 478 | 747 | 848 | 911

DNS [34] 51.17 | 82.09 | 90.51 | 95.92
SpindleNet [36] 53.80 | 74.1 | 832 | 92.1

HydraPlus-Net [19] 56.6 78.8 87.0 92.4
(Ours) PLSR 65.98 | 81.49 | 88.45 | 95.25

3.1 Implementation details

We use Resnet50 [9] as baseline, pre-trained on ImageNet and mod-
ify the last fully connected layer with the number of classes i.e.
751; 1,367 and 702 units for Market-1501, CUHK03 and DukeMTM-
CRelD respectively. We train the network for 130 epochs using
stochastic gradient descent with a base learning rate Ir of 0.01. We
gradually decrease Ir by a factor of y = 0.1 after 40 epochs. We
use a momentum of i = 0.9, weight decay of A = 5x 10™* and a
mini-batch size of 32. DCGAN model is trained for 30 epochs using
Adam [13] with learning rate Ir = 0.0002 and f; = 0.5. All the input
images are resized to 256 X 256 before being randomly cropped into
224 x 224 with random horizontal flip. We scale the pixels in the
range of 1 and —1 and apply zero-center by mean pixel and random
erasing [41].

3.2 Evaluations

We use Cumulated Matching Characteristics (CMC) and mean aver-
age precision (mAP) as defined in [37] to evaluate the performance
of our model. We use the L2 Euclidean distance to compute a sim-
ilarity score for ranking and followed the evaluation protocol as
defined by previous works [29, 39, 40]. We only report rank 1, 5
and 10 accuracy. Competitive results are also shown in black.

3.2.1 Comparison with the state of art. We evaluate the proposed
model on four datasets and report the results on Table 23 4 5.~

means that no reported results is available and **’ means the paper
is available on ArXiv but not published.

Market-1501 [37] dataset contains 12, 936 images and 1501 iden-
tities. We used 751 identities for training and 750 identities for test-
ing.. On this dataset, we achieved an 89.16% rank 1 accuracy and
75.15% mAP accuracy exceeding LSRO [40] by 5.19% and 9.08%
respectively. Table 2 shows that our method outperforms previous
works globally.

CUHKO3 [16] datasets provides two image sets, one set is auto-
matically detected by the deformable-part-model detector DPM [7],
and the other set contains manually cropped bounding boxes. In
this work, we use the detected samples, so misalignment, occlusions
and body part missing are quite common, making the dataset more
realistic. On CUHKO3, we achieved a 91.03% rank 1 accuracy and
94.21% mAP accuracy exceeding LSRO [40] by 6.41% and 6.81 on
rank 1 and mAP respectively. As shown in Table 3, out method
outperforms existing models.

On DukeMTMCRelD, as shown in Table 4, we achieved an
76.53% rank 1 accuracy and 60.79% mAP accuracy. We exceed
LSRO [40] results by 8.85% and 13.66 on rank 1 and mAP accuracry
respectively. However, SVDNet [24] exceeds our model by only
0.17%.

On VIPeR dataset, our method achieves a 65.98% rank 1 accu-
racy. We improve the baseline by 3.95% for rank 1 accuracy and
achieve competitive results for rank 5, 10 and 20.

Compared to previous works in general, our method (PLSR)
boots 1.23%~6.41% rank 1 accuracy and 1.43%~6.81% mAP on all
datasets.

4 CONCLUSION

In this paper, we proposed Partial Label Smoothing Regulariza-
tion (PSLR), a semi-supervised framework to address the over-
smoothness problem found in current regularization methods. PSLR
consists of three steps. Firstly, we trained a CNN for discriminative
learning patterns from labeled data. For each training image, we
extract a high dim-feature map from the last convolution layer and
directly apply k-means clustering algorithm. Secondly, we used a
GAN model to generate sample images for each given cluster. Each
generated sample is therefore assigned a label using our regular-
ization method. And finally, we defined a new objective function
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and fine-tuned a baseline model. Extensive experiments on four
large-scale datasets show the superiority of our method over a vast
state-of-art methods.
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